Some convergence results in discrete conformal geometry

Feng Luo
Rutgers University
Joint with David Gu, Jian Sun and Tianqi Wu
Workshop on Circle Packings and Geometric Rigidity
ICERM, July 6, 2020

Outline

- Recall classical Riemann surfaces/conformal geometry
- Circle packing, Thurston's convergence conjecture and rigidity
- Discrete conformal geometry from vertex scaling point of view
- Convergences in discrete conformal geometry
- Sketch of the proof
- Some problems on rigidity of infinite patterns

Riemann mapping theorem: every simply connected domain is conformal to \mathbf{D} or \mathbf{C}.

discrete conformal?
$S=$ connected surface
Uniformization Thm(Poincare-Koebe) \forall Riemannian metric d on S , $\exists \lambda: S \rightarrow R_{>0}$ s.t., $(S, \lambda d)$ is a complete metric of curvature $-1,0,1$.
uniformization metric λd is conformal to d angles in d and λd are the same

Q1. Can one compute the uniformization maps/metrics ?

Q2. Is there a discrete uniformization thm for polyhedral surfaces? ANS: yes (Gu-L-Sun-Wu)
Q3. Do discrete maps/metrics converge to the corresponding smooth counterparts?

A PL metric d on (S, V) is a flat cone metric, cone points in V. Isometric gluing of \mathbf{E}^{2} triangles along edges: $(\mathrm{S}, \mathcal{\mathcal { L }}, 1)$.

$K(v)=2 \pi$-sum of angles at v
$=2 \pi$ - cone angle at v

A triangulated PL metric ($\mathrm{S}, \mathcal{\mathcal { L }}, 1$) is Delaunay: $\mathrm{a}+\mathrm{b} \leq \pi$ at each edge e .

Discrete conformal geometry from circle packing point of view

Koebe-Andreev-Thurston theorem

Any triangulation of a disk is isomorphic to the nerve of a circle packing of the unit disk.

Discrete Riemann mapping

Thm (Thurston). For any simplicial triangulation \mathcal{F} of a closed surface S of genus >1,
there \exists ! a hyperbolic metric d and a circle packing P on (S, d) whose nerve is \mathcal{F}.

Circle packings produce a PL homeomorphism between the domains.

Question. Do they converge to the conformal map?

Thurston's discrete Riemann mapping conjecture, Rodin-Sullivan's theorem

Rigidity of infinite circle packings

Thurston's Conjecture.

Hexagonal circle packing of \mathbf{C} :

Convergence related to rigidity of infinite patterns

All hexagonal circle packings of \mathbf{C} are regular.

Theorem (Rodin-Sullivan).
Thurston's conjecture holds.

Thm (Schramm). If P and P^{\prime} are two infinite circle packings of \mathbf{C} whose nerves are isomorphic, then P and P^{\prime} differ by a linear transformation.

Discrete conformal geometry from vertex scaling point of view

Def. Two triangulated PL surfaces ($\mathrm{S}, \mathscr{Z}, 1$) and ($\mathrm{S}, \mathscr{\mathcal { K }}, \mathrm{I}$) are said to differ by a vertex scaling if $\exists \lambda: V(\mathscr{L}) \rightarrow R_{0}$, s.t., $\mathbf{l}=\lambda_{*} 1$ on E where

$$
\begin{gathered}
\lambda_{*} 1(u v)=\lambda(u) \lambda(v) l(u v) . \\
u
\end{gathered}
$$

This is a discretization of the conformal Riemannian metric $\lambda \mathrm{g}$

Discrete conformal equivalence of polyhedral metrics on (S,V)

Given a PL metric d on (S, V), find a Delaunay triangulation T of (S, V, d) s.t., d is (S, T, I).
Move 1. Replace T by another Delaunay triangulation T^{\prime} of (S, V, d).

Move 2. Replace ($\mathrm{S}, \mathrm{T}, \mathrm{I}$) by a vertex scaled ($\mathrm{S}, \mathrm{T}, \mathrm{w}_{*} \mathrm{I}$) s.t. it is still Delaunay.
Def. (Gu-L-Sun-Wu) Two PL metrics d, d' on a closed marked surface (S, V) are discrete conformal, if they are related by a sequence of these two types of moves.

All triangulations are Delaunay

Thm (Gu-L-Sun-Wu). \forall PL metric d on a closed (S,V) is discrete conformal to a unique (up to scaling) PL metric d^{*} of constant curvature $\frac{2 \pi \chi\left(S^{\prime}\right)}{|V|}$.
RM 1. First proved by Fillastre for the torus in a different content.
RM 2. It holds for any prescribed curvature.

Do the metrics $\mathrm{d}^{*}{ }_{\mathrm{n}}$ converge to the smooth uniformization metric?
Thm (Gu-L-Wu). The convergence holds for any Riemannian torus $\left(\mathrm{S}^{1} \mathrm{XS}{ }^{1}, \mathrm{~g}_{\mathrm{ij}}\right)$.
Thm(Wu-Zhu 2020). The convergence holds for any Riemannian closed surface of genus>1 in the hyperbolic background PL metrics.
Q. Do discrete conformal maps converge to the Riemann mapping?

Thm (L-Sun-Wu). Given a Jordan domain Ω and $A, B, C \in \partial \Omega, \exists$ domains $\Omega_{n} \rightarrow \Omega$, s.t., (a) $\quad \Omega_{n}$ triangulated by equilateral triangles,
(b) the associated discrete uniformization maps $f_{n} \rightarrow$ Riemann mapping for ($\Omega ; A, B, C$).

Thm(L-Sun-Wu, Dai-Ge-Ma). If T is a Delaunay geometric hexagonal triangulation of a simply connected domain in \mathbf{C} s.t.,

$$
\exists \mathrm{g}: \vee->R_{>0} \text { satisfying }
$$

$$
\text { length(vv')=g(v)g(v') for all edges } e=v v^{\prime},
$$ then $g=$ constant, i.e., T is regular.

Thm (Rodin-Sullivan). If T is a geometric hexagonal triangulation of a simply connected domain in \mathbf{C} s.t., $\exists \mathrm{r}$: $\mathrm{V}->\mathrm{R}_{>0}$ satisfying

$$
\text { length }\left(v v^{\prime}\right)=r(v)+r\left(v^{\prime}\right) \text { for all edges } e=v v^{\prime} \text {, }
$$ then $r=$ constant.

A new proof of Rodin-Sullivan's thm

$$
\text { Let } V=\mathbf{Z}+\mathbf{Z}(\eta), \quad \eta=e^{\pi i / 3} \text { : }
$$

Thm(Rodin-Sullivan) If T is a geometric hexagonal triangulation of a simply connected domain in \mathbf{C} s.t., $\exists \mathrm{u}: \mathrm{V} \rightarrow \mathbf{R}$ satisfying length $\left(v v^{\prime}\right)=e^{u(v)}+e^{u\left(v^{\prime}\right)}$, then $u=$ const.

Liouville type thm. A bounded discrete harmonic function u on V is a constant.
Goal: for $\delta \in \mathbf{V}$, show $\mathrm{g}(\mathrm{x})=\mathrm{u}(\mathrm{x}+\delta)-\mathrm{u}(\mathrm{x})$ is constant.
Ratio Lemma ($R-S$). ヨ $C>0$ s.t., for all pairs of adjacent radii

$$
\begin{gathered}
r(v) / r\left(v^{\prime}\right) \leq e^{c}, \\
\text { i.e., } \quad\left|u(v)-u\left(v^{\prime}\right)\right| \leq c .
\end{gathered}
$$

Corollary.

$$
\left|u\left(v^{\prime}\right)\right| \leq|u(v)|+C d\left(v, v^{\prime}\right)
$$

Max Principle: If $r_{0} \geq R_{0}$ and $r_{i} \leq R_{i}, i=1, \ldots, 6$, and

$$
K_{r}\left(v_{0}\right)=K_{R}\left(v_{0}\right),
$$

then

$$
r_{i}=R_{i} \text { for all } i .
$$

Proof (Thurston)

Fix r_{2}, r_{3} and let $r_{1} \pi$, then $a_{1} \searrow$ and $a_{2} \pi, a_{3} \pi$.

Corollary. The ratio function r / R of two flat $C P$ metrics has no max point unless $r / R=$ constant.

A new proof of Rodin-Sullivan's thm, cont.

$$
V=\mathbf{Z}+\mathrm{e}^{\pi i / 3} \mathbf{Z} .
$$

Thm(Rodin-Sullivan). If T is a geometric hexagonal triangulation of a simply connected domain in C s.t., \exists u:V -> R satisfying length $\left(v v^{\prime}\right)=e^{u(v)}+e^{u\left(v^{\prime}\right)}$, then $u=$ const.

Suppose u : $V \rightarrow \mathbf{R}$ is not a const.
Then $\exists \delta \in\left\{1, \mathrm{e}^{\pi i / 3}\right\}$, s.t.,

$$
\lambda=\sup \{u(v+\delta)-u(v): v \in V\} \neq 0 \text { and }<\infty .
$$

Take $v_{n} \in V$, s.t., $\quad u\left(v_{n}+\delta\right)-u\left(v_{n}\right)>\lambda-1 / n$

$$
\begin{aligned}
& u(v+\delta)-u(v) \leq \lambda, \text { for all } v \in V \\
& \left|u(v)-u\left(v^{\prime}\right)\right| \leq C, \quad v_{\sim} v^{\prime}, \text { ratio lemma\} }
\end{aligned}
$$

Combinatorial distance from v to 0.

$$
u_{n}(v)=u\left(v+v_{n}\right) u\left(v_{n}\right) \in R^{v}:
$$

$$
u_{n}(0)=0, \quad u_{n}(\delta)-u_{n}(0)>\lambda-1 / n, \quad u_{n}(v+\delta)-u_{n}(v) \leq \lambda, \quad\left|u_{n}(v)\right| \leq C d(v, 0) .
$$

Taking a subsequence,

$$
\lim _{n} u_{n}=u_{\#}, \quad u_{\#} \in \mathbf{R}^{v} \text {, s.t., }
$$

(1) the CP metric $e^{u \#}$ is still flat (may be incomplete).
(2) $\Delta u_{\#}(v)=u_{\#}(v+\delta)-u_{\#}(v)$ achieves maximum point at $v=0$.

By the max principle, $u_{\#}(\mathrm{v}+\delta)-\mathrm{u}_{\#}(\mathrm{v}) \equiv \lambda$.

Repeat it for $u_{\#}$ (instead of u), taking limit to get $u_{\# \#} \cdot\left(\delta, \delta^{\prime}\right.$ generate V)

$$
\begin{aligned}
& \mathrm{u}_{\# \#}\left(\mathrm{v}+\delta^{\prime}\right)-\mathrm{u}_{\# \#}(\mathrm{v})=\text { constant } \\
& \mathrm{u}_{\# \#}(\mathrm{v}+\delta)-\mathrm{u}_{\# \#}(\mathrm{v}) \equiv \lambda .
\end{aligned}
$$

So $u_{\# \#}$ is a non-constant linear function on V.
$F: V \rightarrow R$ is linear if it is a restriction of a linear map on R^{2}.

Doyle spiral circle packing (raduii=e ${ }^{u}$, u linear, implies flat)

Lemma (Doyle) If $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{R}$ non-constant linear, then the CP metric e^{f} is flat and the developing map sends to two disjoint circles to two circles in \mathbf{C} with overlapping interiors.
\Longrightarrow CP metric $e^{u \# \#}$ does not have injective developing map.
\longrightarrow CP metrics $\mathrm{e}^{\mathrm{u} \mathrm{\#}}$ and hence e^{u} do not have injective developing maps, a contradiction.
Need: a ratio lemma (for taking limit), a maximum principle,
a spiral situation (log(radius) linear) producing self intersections.
All of them hold in the vertex scaling setting.
L_{0} is the constant function on the lattice $V=\mathbf{Z}+e^{\pi i / 3} \mathbf{Z}$.

Ratio Lemma. If $\mathrm{w}_{*} \mathrm{~L}_{0}$ is a PL metric s.t. $\mathrm{K}(\mathrm{v})=0$, then $\mathrm{x} / \mathrm{y} \leq 6$.

A maximum principle from a variational framework

Prop (L, 2004).

Then

$$
\frac{\partial a_{i}}{\partial u_{j}}=\frac{\partial a_{j}}{\partial u_{i}} \quad \text { and } \quad\left[\frac{\partial a_{i}}{\partial u_{j}}\right]_{3 \times 3} \text { is negative semi-definite. }
$$

Maximum principle. Let $\left(B_{1}\left(v_{0}\right), I\right)$ and $\left(B_{1}\left(v_{0}\right), l^{\prime}\right)$ be two flat Delaunay PL metrics, s.t., $I^{\prime}=\mathrm{u}_{*} I$ and $\mathrm{u}\left(\mathrm{v}_{0}\right)=\max \left\{\mathrm{u}\left(\mathrm{v}_{1}\right), \ldots ., \mathrm{u}\left(\mathrm{v}_{6}\right)\right\}$. Then $\mathrm{u}=$ constant.

L_{0} is a constant function on V.
Spiral Lemma (Gu-Sun-Wu). Suppose $w: V \rightarrow \mathbf{R}$ is non-constant linear s.t. $\mathrm{w}_{*} \mathrm{~L}_{0}$ is a piecewise linear metric on T. Then
(1) $w_{*} L_{0}$ is flat, and
(2) \exists two triangles in T whose images under the develop map intersect in their interiors.

Some conjectures on rigidity of infinite patterns

Conjecture (L-Sun-Wu). Suppose (C, V, T, l) and (C, V, T', l') are two geometric triangulations of the plane s.t.,

1. both are Delaunay,
2. $\mathrm{T}, \mathrm{T}^{\prime}$ are isomorphic topologically,
3. $w_{*} 1=l^{\prime}$.

Then T and T^{\prime} differ by a linear transformation u. ..

T

Counterpart of Schramm's rigidity theorem.

Regular circle packing

Regular triangulation

Regular square tiling

Conjecture: If H is hexagonal square tiling of \mathbf{C}, then all squares have the same size.

Thank you.

Conditions on triangulations to insure convergence

let (S, d) be a closed Riemannian surface of genus $g, \lambda d$ is the uniformization metric. Goal: compute λd.
A sequence of triangulations ($\mathrm{S}, \mathrm{T}_{\mathrm{n}}, \mathrm{I}_{\mathrm{n}}$) is regular if there exist $\delta>0, C>0, \mathrm{a}_{\mathrm{n}} \rightarrow 0$ s.t.
(1) all angles in T_{n} are in $\left(\delta, \frac{\pi}{2}-\delta\right)$,
(2) all lengths of edges in T_{n} are in $\left(\frac{q_{n}}{C}, C q_{n}\right)$.

Thm (Gu-L-Wu). If (S, T_{n}, I_{n}) is a regular sequence of triangulated polyhedral tori approximating a Riemannian torus (S, d) and $\left(\mathrm{S}, \mathrm{T}_{\mathrm{n}}{ }^{\prime}, \mathrm{I}_{n}{ }^{\prime}\right)$ is the flat polyhedral torus discrete conformal to (S, T_{n}, I_{n}) of area 1 , then ($S, T_{n}{ }^{\prime}, I_{n}{ }^{\prime}$) converges uniformly to the uniformization metric λd associated to (S, d).

Wu-Zhu improved conditions:

Exists $\delta>0$ s.t., (1) all angles all in T_{n} are at least δ and
(2) sum of two angles facing each edge are at most $\pi-\delta$.

