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• Recall classical Riemann surfaces/conformal geometry

• Circle packing, Thurston’s convergence conjecture and rigidity

• Discrete conformal geometry from vertex scaling point of view

• Convergences in discrete conformal geometry

• Sketch of the proof

• Some problems on rigidity of infinite patterns



S =  connected surface

Uniformization Thm(Poincare-Koebe)  ∀ Riemannian metric d on S, 
Ǝ λ: S → R>0  s.t.,  (S, λd) is a complete metric of curvature -1, 0, 1.
 

Q2.   Is there a discrete uniformization thm for polyhedral surfaces? 
 
Q3.   Do discrete maps/metrics  converge to the corresponding smooth counterparts? 

Q1.   Can one compute the uniformization maps/metrics ? 

ANS: yes (Gu-L-Sun-Wu)

            uniformization metric λd is conformal to d   

 Riemann mapping theorem: every simply connected domain is conformal to D or C. 

angles in d and λd are the same  



Isometric gluing of  E2 triangles along edges:  (S, T,  l ).

 

Curvature  K=Kd: V →R, 
      K(v)= 2π-sum of angles at v
             = 2π- cone angle at v
 
        

 A triangulated PL metric (S, T,  l) 
 is Delaunay:  a+b ≤π  at each edge e.

K(v)>0

K(v)<0
Triang
ulation

Polyhedral surfaces

 A PL metric d on (S,V) is a flat cone metric, cone points in V. 

a+b ≤ π

Eg. Circle packing metric r: V → R>0,    lij=ri+rj

edge 
lengt
h

Triangulated PL 
surface



Discrete conformal geometry from circle packing point of view

Koebe-Andreev-Thurston theorem
Any triangulation of a disk is isomorphic to the nerve of a circle packing  of the unit disk.

Thm (Thurston). For any simplicial triangulation T of a closed surface S of genus 
>1, 
there Ǝ ! a hyperbolic metric d and a circle packing P on (S, d) whose nerve is T.

                 Circle packings produce a PL homeomorphism between the domains.
 
Question.    Do they converge to the conformal map? 

Discrete Riemann mapping

discrete uniformization theorem



Thurston’s discrete Riemann mapping conjecture, 
Rodin-Sullivan’s theorem

Koebe-Andreev-Thurston theorem

Proof:

1. fn converges

2. limit is conformal

rigidity of the hexagonal circle packing

ƎK, all fn are K-quasi-conformal

fn

fn→Riemann mapping

 Stephenson’s pictures



Regular

    

    Rigidity of infinite circle packings                 Hexagonal circle packing of C: 

Thurston’s Conjecture.

                               All hexagonal circle packings of C are regular.

Theorem (Rodin-Sullivan).  
                              Thurston’s conjecture holds.

Thm (Schramm). If P and P’ are two infinite circle packings of C whose nerves are
                              isomorphic,   then P and P’ differ by a linear transformation.

Convergence related to rigidity of infinite 
patterns



Def.  Two triangulated PL surfaces (S, T , l ) and (S, T , l ) are said to differ by a 
vertex scaling  if Ǝ λ: V(T ) → R>0, s.t.,  l = λ*l  on E  where
   
                         λ*l(uv) = λ(u) λ(v) l(uv).

 

  u  
v

 

Discrete conformal geometry from vertex scaling point of view 

This is a discretization of the conformal Riemannian metric λg  

    g   ↔     l

 λg    ↔    λ* l 



Discrete conformal equivalence  of polyhedral metrics on (S,V)

Def. (Gu-L-Sun-Wu)  Two PL metrics d, d’ on a closed marked surface (S,V) are
 discrete conformal,  if they are related by a sequence of these two types of moves. 

Given a PL metric d on (S,V), find a Delaunay triangulation T of (S,V,d)  s.t., d is (S, T, l).

Move 1.   Replace T by another Delaunay triangulation T’ of (S,V,d).

Move 2.  Replace (S, T, l)  by a vertex scaled (S, T, w*l) s.t. it is still Delaunay. 



Thm (Gu-L-Sun-Wu). ∀ PL metric d on a closed (S,V) is discrete conformal to a
 unique (up to scaling) PL metric d* of constant curvature               .

Question.             Do the metrics d*n converge to the smooth uniformization metric?

 

RM 1. First proved by Fillastre for the torus in a different 
content.
RM 2. It holds for any prescribed curvature.

Thm(Gu-L-Wu) .  The convergence holds for any Riemannian torus (S1XS1, gij).

Thm(Wu-Zhu 2020) .  The convergence holds for any Riemannian closed surface
                                          of genus>1 in the hyperbolic background PL metrics.

Riemannian surface



.  discrete uniformization thm

Riemann mapping F

f
n

Convergence of  fn → Riemann mapping F?

Q.  Do discrete conformal maps converge to the Riemann mapping? 

PL approximations

 Q.    Is a Delaunay hexagonal triangulation of C, discrete conformal to the regular   
                     hexagonal triangulation, necessary regular?   

quasi-conformality implies fn → h.

Is h conformal?

 work of 
Bobenko-Pinkall-Springborn



Thm (Rodin-Sullivan) .  If T is a geometric hexagonal 
triangulation of a simply connected domain in  C s.t.,
  ∃ r: V -> R>0  satisfying 
           length(vv’)=r(v)+r(v’)    for all edges e=vv’,
then r=constant.
 

Thm(L-Sun-Wu, Dai-Ge-Ma) .   If T is a Delaunay geometric hexagonal 
triangulation of a simply connected domain in  C  s.t.,
                 ∃ g: V -> R>0  satisfying                            
                length(vv’)=g(v)g(v’)      for all edges e=vv’,
 then g =  constant, i.e., T is regular.

Thm (L-Sun-Wu) .   Given a Jordan domain Ω and A,B,C∈∂Ω, Ǝ domains Ωn →Ω, s.t.,
(a)    Ωn triangulated by equilateral triangles, 

(b)     the associated discrete uniformization maps fn → Riemann mapping for (Ω;A,B,C).



A new proof of Rodin-Sullivan’s thm

Liouville type thm.  A bounded discrete harmonic function u on V is a constant.
 
              Goal:    for δ ∈V,   show  g(x)=u(x+δ)-u(x) is constant.

Let V =  Z+Z(η),  η =eπi/3:

Thm(Rodin-Sullivan)  If T is a geometric hexagonal triangulation of a 
simply connected domain in C s.t., Ǝ u:V→  R satisfying  
                  length(vv’)=eu(v)+eu(v’),  then u=const.

Ratio Lemma (R-S).  Ǝ C >0  s.t., 
 for all pairs of adjacent radii
                      
                r(v)/r(v’) ≤ eC,  

   i.e.,      |u(v)-u(v’)|  ≤  C.

Corollary.   
     |u(v’)| ≤ |u(v)|+ Cd(v,v’).



Max Principle:   If r0  ≥ R0  and ri ≤ Ri , i=1,…,6,  and  

                                   Kr(v0)=KR(v0),

then                           ri=Ri for all i.

 
Proof (Thurston)

 Fix r2, r3 and let r1 ↗, 

 then  a1 ↘ and a2 ↗, a3 ↗.

smaller

larger

Corollary. The ratio function r/R of two flat CP metrics has no max point unless  
r/R=constant.



A new proof of Rodin-Sullivan’s thm, cont.
V =  Z+ eπi/3Z .

Thm(Rodin-Sullivan).  If T is a geometric hexagonal triangulation of
a simply connected domain in C s.t., Ǝ u:V -> R satisfying  
                             length(vv’)=eu(v)+eu(v’),    then u=const.

Suppose u: V→ R is not a const. 
Then  Ǝ δ ∈{ 1, eπi/3}, s.t.,
                            λ=sup{ u(v+δ)-u(v) : v є V} ≠ 0 and <∞.

Take vn ∈ V, s.t.,     u(vn+δ)-u(vn)  > λ-1/n
                                 u(v+δ)-u(v) ≤ λ,  for all v ∈ V
                                |u(v)-u(v’)| ≤  C,  v~v’,  ratio lemma

Define,   un(v)= u(v+vn)-u(vn):
                un(0)=0,  
                un(δ)-un(0) > λ -1/n,  
                un(v+δ)-un(v)≤ λ,
               |un(v)| ≤   C d(v,0).

Combinatorial distance from v to 0.

0

vn



 Taking a subsequence,           limn un =u# ,   u# ∈ RV ,   s.t., 

 (1)   the CP metric  eu#  is still flat (may be incomplete).

 (2)   Δu# (v) =u#(v+δ)-u#(v) achieves maximum point at v=0. 

By the max principle,   u#(v+δ)-u#(v) ≡ λ.

Repeat it for u# (instead of u), taking limit to get u## . (δ, δ’ generate V)

                                  u##(v+δ’)-u##(v)= constant
                                  u##(v+δ)-u##(v) ≡ λ.
                          So u## is a non-constant linear function on V. 

   Recall                                        un(v)= u(v+vn)-u(vn)  ∈  RV: 

   un(0)=0,           un(δ)-un(0) >λ-1/n,         un(v+δ)-un(v)≤ λ,      |un(v)| ≤ C d(v,0).

F: V → R is linear if it is a restriction of a linear map on R2.



Lemma (Doyle) If f: V → R non-constant linear, then the CP metric ef  is flat and the 
developing map sends to two disjoint circles to two circles in C with overlapping 
interiors.

Doyle spiral circle packing  (raduii=eu, u linear, implies flat)

                     CP metric eu## does not have injective developing map.
                     CP metrics eu#  and hence eu do not have injective developing maps, a contradiction.

Developing map

Need:                    a ratio lemma (for taking limit),
                               a maximum principle,
                               a spiral situation (log(radius) linear) producing self intersections.
   All of them hold in the vertex scaling setting.



                L0  is the constant function on the lattice V =  Z+ eπi/3Z .

Ratio Lemma.   If  w*L0 is a  PL metric s.t. K(v)=0, then  x/y ≤6.



A maximum principle from a variational framework

Prop (L, 2004). 

 Then  

Maximum principle.   Let (B1(v0), l) and (B1(v0), l’) be two flat Delaunay PL metrics, s.t.,
                       l’= u*l  and  u(v0)=  max{u(v1), …., u(v6)}.  Then u=constant.



Spiral Lemma (Gu-Sun-Wu).  Suppose w: V → R  is  non-constant linear  s.t. w*L0 is a 
piecewise linear metric on T.  Then  

(1)  w*L0 is flat, and   

(2) Ǝ  two triangles  in T whose images under the develop map intersect in their interiors.

Spiral triangulations  overlapping 

L0 is a constant function on V.



Conjecture (L-Sun-Wu).  Suppose (C, V, T, l) and (C, V, T’, l’) are two geometric triangulations of the 
plane s.t.,

1. both are Delaunay,

2. T, T’ are isomorphic topologically,

3.  w*l = l’. 

Then T and T’ differ by a linear transformation of C.
Counterpart of Schramm’s rigidity theorem. 

Some conjectures on rigidity of infinite patterns

Regular circle packing Regular triangulation  Regular square tiling

Conjecture: If H is hexagonal square tiling of C, then all squares have the same size.



                             Thank you.



Conditions on triangulations to insure convergence 

•  


